Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation
نویسندگان
چکیده
Poly (ADP-ribose) polymerase (PARP) has been proposed to play an important role in the pathogenesis of heart ischaemia/reperfusion (I/R) injury. However, the mechanisms of PARP-mediated heart I/R injury in vivo are still not thoroughly understood. Therefore, in this study, we investigate the effect of PARP inhibition on heart I/R injury and try to elucidate the underlying mechanisms. Studies were performed with I/R rats' hearts in vivo. Ischaemia followed by reperfusion caused a significant increase in Poly (ADP-ribose) (PAR), c-Jun NH2-terminal kinase (JNK) and apoptosis-inducing factor (AIF) activity. Administration of 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), an inhibitor of PARP, decreased myocardial infarction size from 61.11+/-7.46%[0] to 38.83+/-5.67% (P<0.05) and cells apoptosis from 35+/-5.3% to 20+/-4.1% (P<0.05) and simultaneously improved the cardiac function. Western blot analysis showed that administration of DPQ reduced the activation of JNK and attenuated mitochondrial-nuclear translocation of AIF. Additionally, administration of SP600125, an inhibitor of JNK, attenuated mitochondrial-nuclear translocation of AIF. The results of the present study demonstrated that the inhibition of PARP was able to reduce heart I/R injury in vivo. Our results also suggested that JNK may be downstream of PARP activation and be required for PARP-mediated AIF translocation. Inhibition of the activity of PARP may reduce heart I/R injury via suppressing AIF translocation mediated by JNK.
منابع مشابه
Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor.
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury during myocardial infarction. Because diabetes mellitus can substantially alter cellular signal transduction pathways, we have now investigated whether the PARP pathway also contributes to myocardial ischemia/reperfusion (MI/R) injury...
متن کاملPoly(ADP-ribose) polymerase inhibition protects epileptic hippocampal neurons from apoptosis via suppressing Akt-mediated apoptosis-inducing factor translocation in vitro.
Inhibition of poly(ADP-ribose) polymerase (PARP) has been proposed to have a neuroprotective effect on hippocampal neurons in animal models of epilepsy. However, the mechanisms of PARP-mediated epileptic neuron apoptosis in vitro are still not thoroughly understood. Therefore, we investigated the effect of PARP inhibition and the underlying mechanisms in the hippocampal neuronal culture model o...
متن کاملEffect of cilostazol pretreatment on the PARP/AIF-mediated apoptotic pathway in rat cerebral ischemia-reperfusion models
The aim of this study was to observe the expression of poly ADP-ribose polymerase (PARP) and apoptosis-inducing factor (AIF) in the CA1 region of the hippocampus and to explore whether cilostazol pretreatment exerts a protective effect on the brain through the PARP/AIF-mediated pathway in a rat model of cerebral ischemia-reperfusion. Rats were randomly divided into three groups: Sham-surgery, i...
متن کاملPoly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure.
Oxidant stress-induced activation of poly(ADP-ribose) polymerase (PARP) plays a role in the pathogenesis of various cardiovascular diseases. We have now investigated the role of PARP in the process of cardiac remodeling and heart failure in a mouse model of heart failure induced by transverse aortic constriction (banding). The catalytic activity of PARP was inhibited by the potent isoindolinone...
متن کاملCerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation.
Cerebral ischemia-reperfusion leads to vascular dysfunction characterized by endothelial cell injury or death. In the present study, we used an in vitro model to elucidate mechanisms of human brain microvascular endothelial cell (HBMEC) injury after episodic ischemia-reperfusion. Near-confluent HBMEC cultures were exposed to intermittent hypoxia-reoxygenation (HX/RO) and, at different recovery ...
متن کامل